14,217 research outputs found

    The optical counterpart of IGR J00291+5934 in quiescence

    Full text link
    The recent (December 2004) discovery of the sixth accretion-powered millisecond X-ray pulsar IGR J00291+5934 provides a very good chance to deepen our knowledge of such systems. Although these systems are well studied at high energies, poor informations are available for their optical/NIR counterparts during quiescence. Up to now, only for SAX J1808.4-3658, the first discovered system of this type, we have a secure multiband detection of its optical counterpart in quiescence. Among the seven known system IGR J00291+5934 is the one that resembles SAX J1808.4-3658 more closely. With the Italian 3.6 m TNG telescope, we have performed deep optical and NIR photometry of the field of IGR J00291+5934 during quiescence in order to look for the presence of a variable counterpart. We present here the first multiband (VRIJHVRIJH) detection of the optical and NIR counterpart of IGR J00291+5934 in quiescence as well as a deep upper limit in the K−K-band. We obtain an optical light curve that shows variability consistent with a sinusoidal modulation at the known 2.46 hr orbital period and present evidence for a strongly irradiated companion.Comment: 6 pages, 5 figures. Accepted for publication in Astronomy and Astrophysic

    Optical and infrared polarimetry of the transient LMXB Cen X-4 in quiescence

    Full text link
    We present the first optical and infrared polarimetric study of the low mass transient X-ray binary Cen X-4 during its quiescent phase. This work is aimed to search for an intrinsic linear polarisation component in the system emitted radiation that might be due, e.g., to synchrotron emission from a compact jet, or to Thomson scattering with free electrons in an accretion disc. Multiband (BVRI) optical polarimetric observations were obtained during two nights in 2008 at the ESO La Silla 3.6 m telescope (EFOSC2) in polarimetric mode. These observations cover about the 30% of the 15.1 hours orbital period. J-band observations were obtained in 2007 with the NICS (TNG) instrument at La Palma, for a totality of 1 hour observation. We obtained 3-sigma upper limits to the polarisation degree in all the optical bands, with the most constraining one being in the I-band (P<0.5%). No phase-correlated variability has been noticed in all the filters. The J-band observations provided a 6% upper limit on the polarisation level. The constraining upper limits to the polarisation in the optical allowed us to evaluate the contribution of the possible emission of a relativistic particles jet to the total system radiation to be less then the 10%. This is in agreement with the observation of a spectral energy distribution typical of a single black body of a K-spectral type main sequence star irradiated from the compact object. Due to the low S/N ratio it was not possible to investigate the possible dependency of the polarisation degree from the wavelength, that could be suggestive of polarisation induced by Thomson scattering of radiation with free electrons in the outer part of the accretion disc. Observations with higher S/N ratio are required to examine in depth this hypothesis, searching for significant phase-correlated variability.Comment: 7 pages, 9 figures, accepted for publication in section 7. Stellar structure and evolution of Astronomy and Astrophysic

    Doppler tomography of the transient X-ray binary Centaurus X-4 in quiescence

    Full text link
    We present ESO-NTT low resolution spectroscopy of the neutron star X-ray transient Cen X-4 in quiescence over a complete orbital cycle. Our data reveal the presence of a K3-7 V companion which contributes 63% to the 5600-6900A flux and orbits the neutron star with a velocity semi-amplitude of K_2=145.8 +/- 1.0 km s^{-1}. This, combined with a previous determination of the inclination angle and mass ratio, yields a neutron star and companion mass of M_1=1.5 +/- 1.0 M_Sun and M_2=0.31 +/- 0.27 M_Sun, respectively. The mass donor is thus undermassive for the inferred spectral type indicating it is probably evolved, in agreement with previous studies. Doppler tomography of the H_alpha line shows prominent emission located on the companion and a slightly asymmetric accretion disc distribution similar to that seen in systems with precessing eccentric discs. Strong H_alpha emission from the companion can be explained by X-ray irradiation from the primary. No evidence is found for a hot spot in H_alpha, whereas one is revealed via Doppler tomography of the HeI lines. This can be interpreted as the hot spot and outer regions of the disc being at a higher temperature than in other systems.Comment: 9 pages, 5 figures, accepted for publication in A&

    The long-term evolution of the X-ray pulsar XTE J1814-338: a receding jet contribution to the quiescent optical emission?

    Full text link
    We present a study of the quiescent optical counterpart of the Accreting Millisecond X-ray Pulsar XTE J1814-338, carrying out multiband (BVR) orbital phase-resolved photometry using the ESO VLT/FORS2. The optical light curves are consistent with a sinusoidal variability modulated with the orbital period, showing evidence for a strongly irradiated companion star, in agreement with previous findings. The observed colours cannot be accounted for by the companion star alone, suggesting the presence of an accretion disc during quiescence. The system is fainter in all analysed bands compared to previous observations. The R band light curve displays a possible phase offset with respect to the B and V band. Through a combined fit of the multi-band light curves we derive constraints on the companion star and disc fluxes, on the system distance and on the companion star mass. The irradiation luminosity required to account for the observed day-side temperature of the companion star is consistent with the spin-down luminosity of a millisecond radio pulsar. The flux decrease and spectral evolution of the quiescent optical emission observed comparing our data with previous observations, collected over 5 years, cannot be well explained with the contribution of an irradiated companion star and an accretion disc alone. The progressive flux decrease as the system gets bluer could be due to a continuum component evolving towards a lower, bluer spectrum. While most of the continuum component is likely due to the disc, we do not expect it to become bluer in quiescence. Hence we hypothesize that an additional component, such as synchrotron emission from a jet was contributing significantly in the earlier data obtained during quiescence and then progressively fading or moving its break frequency toward longer wavelengths.Comment: 7 pages, 8 figures, accepted for publication in Section 7. Stellar structure and evolution of Astronomy and Astrophysic

    Further Constraints on Thermal Quiescent X-ray Emission from SAX J1808.4-3658

    Full text link
    We observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar, in deep quiescence with XMM-Newton and (near-simultaneously) Gemini-South. The X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and 2006, describable by an absorbed power-law with photon index 1.74+-0.11 and unabsorbed X-ray luminosity L_X=7.9+-0.7*10^{31} ergs/s, for N_H=1.3*10^{21} cm^{-2}. Fitting all the quiescent XMM-Newton X-ray spectra with a power-law, we constrain any thermally emitting neutron star with a hydrogen atmosphere to have a temperature less than 30 eV and L_{NS}(0.01-10 keV)<6.2*10^{30} ergs/s. A thermal plasma model also gives an acceptable fit to the continuum. Adding a neutron star component to the plasma model produces less stringent constraints on the neutron star; a temperature of 36^{+4}_{-8} eV and L_{NS}(0.01-10 keV)=1.3^{+0.6}_{-0.8}*10^{31} ergs/s. In the framework of the current theory of neutron star heating and cooling, the constraints on the thermal luminosity of 1808 and 1H 1905+000 require strongly enhanced cooling in the cores of these neutron stars. We compile data from the literature on the mass transfer rates and quiescent thermal flux of the largest possible sample of transient neutron star LMXBs. We identify a thermal component in the quiescent spectrum of the accreting millisecond pulsar IGR J00291+5934, which is consistent with the standard cooling model. The contrast between the cooling rates of IGR J00291+5934 and 1808 suggests that 1808 may have a significantly larger mass. This can be interpreted as arising from differences in the binary evolution history or initial neutron star mass in these otherwise similar systems.Comment: ApJ in press, 7 pages, 2 color figure

    Multiple tidal disruption flares in the active galaxy IC 3599

    Get PDF
    Tidal disruption events occur when a star passes too close to a massive black hole and it is totally ripped apart by tidal forces. It may also happen that the star is not close enough to the black hole to be totally disrupted and a less dramatic event might happen. If the stellar orbit is bound and highly eccentric, just like some stars in the centre of our own Galaxy, repeated flares should occur. When the star approaches the black hole tidal radius at periastron, matter might be stripped resulting in lower intensity outbursts recurring once every orbital period. We report on Swift observations of a recent bright flare from the galaxy IC 3599 hosting a middle-weight black hole, where a possible tidal disruption event was observed in the early 1990s. By light curve modelling and spectral fitting we can consistently account for the events as the non-disruptive tidal stripping of a star into a highly eccentric orbit. The recurrence time is 9.5 yr. IC 3599 is also known to host a low-luminosity active galactic nucleus. Tidal stripping from this star over several orbital passages might be able to spoon-feed also this activity.Comment: Accepted for publication to Astronomy & Astrophysic
    • …
    corecore